
iqMesh SPI (VISION SPI) Integration — Step-by-Step Debug Guide
0) Preconditions (do these once)

• Build flags / optimization: Start with no LTO and -O0/-Og, enable full debug symbols. (Debug mode)

• Single caller: Ensure iqMesh_task() is called from one context only (main loop or a dedicated RTOS task). No
concurrent calls.

• Scheduler cadence: Call iqMesh_task() regularly (e.g., in main or every ms). Starvation will stall the state
machine.

• Pin mapping: Double-check IRQ, CS, MOSI, MISO, SCK match your board schematic and voltage levels (no 5V
on 3V3 parts).

• SPI mode/speed: Match CPOL/CPHA and max clock of the module. If unsure, start slow (e.g., 1 MHz) and mode
0 or the mode your example uses.

1) Library initialization
Break: libIqMeshSpiInterface.c:204 in iqMesh_init.
Expect:

• Function is called exactly once after boot.
If FAIL:

• Confirm you call iqMesh_init() before the first iqMesh_task().

2) Task loop is running
Break: libIqMeshSpiInterface.c:322 in iqMesh_task.
Expect:

• Breakpoint hits repeatedly at your chosen cadence.

• No long gaps (watch a counter or timestamp to detect stalls).
If FAIL:

• Wire iqMesh_task() into main loop/RTOS task with adequate priority and stack.

• Make sure no blocking calls (e.g., long delays) run at higher priority and starve this task.

3) IRQ pin read function
Function: Check Function HardwareIqMeshGpioReadIrqPin() (in your main.c example).
Expect:

• Reads the actual IRQ line (correct port/pin).

• Correct logic polarity (active level matches hardware).

• Input mode and pull (pull-up/down) are configured correctly.
Probe:

• Code: Set a breakpoint inside HardwareIqMeshGpioReadIrqPin() and watch the returned value change when
traffic occurs.

• HW: Logic analyzer/oscilloscope on the IRQ pin. You should see edges when iqMesh needs attention.
If FAIL:

• Fix the GPIO init (mode=Input, pull as required).

• Invert the read value if your board inverts the signal.

• Check level shifting / voltage domain compatibility.

4) TX buffer & packet allocation
Break: spi_iqmesh.c:81 in spiIqMesh_PrepareData().
Expect:

• Function is hit whenever a packet is prepared.

• AllocateTxBuffer() returns true.
If FAIL (not called):

• Step back to where AllocateTxBuffer() is used and inspect why it returns false.

• Heap check: Increase heap or switch to static buffers. Watch for malloc failure or fragmentation.

5) CS set via handler
Break: libIqMeshSpiInterface.c:92 in spiIqMesh_SetData() — confirm handler.SPISetCs(...) is invoked.
Expect:

• Called prior to each SPI transaction.

• Correct CS polarity (usually active-low).
If FAIL:

• Recheck the IRQ handling path (IRQ drives the need to transact).

• Return to step 3 (bad IRQ prevents transactions).

• Verify your handler struct is correctly assigned during init.

6) Hardware CS toggling (board function)
Function: HardwareIqMeshSpiSetCsPin(bool active) in your main.c. (Example)
Break: HardwareIqMeshSpiSetCsPin and check if it gets called.
Expect:

• CS pin toggles (active during the full SPI frame).
Probe (HW):

• LA/scope on CS line: one clean low (or high, per polarity) spanning the entire transfer.
If FAIL:

• Fix pin mapping, polarity, and GPIO speed.

7) TX/RX data path selection
Function: HardwareIqMeshSpiSetTxRx(...) in your main.c. (Example)
Break: HardwareIqMeshSpiSetCsPin and check if it gets called.
Expect:

• MOSI shows activity during transfer.

• SCK present and clean; matches configured SPI mode.

• MISO shows non-tristated data while CS is active.
Probe (HW):

• LA/scope on MOSI/MISO/SCK. Sample around mid-bit per your CPHA.
If FAIL:

• Lower SPI speed.

• Verify CPOL/CPHA and bit order.

8) DMA RX completion path
Break: main.c in your _SPI_DMA_RxTransferCompleteCallback.
Watch:

• dmaBufLength > 0.

• dmaBufRx[0] not 0x00 and not 0xFF when dmaBufLength == 1.
Expect:

• Callback fires per transaction.

• Buffer contents change between transactions.
If FAIL:

• Ensure DMA is properly linked to the SPI RX stream.

• Verify CS remains asserted until the last RX byte completes.

9) External IRQ line (EXTI) callback chain
Breaks & Flow:

• Break inside your EXTI callback (e.g., EXINT_IrqLineCallback in main.c).

• That callback should call SystemIqMeshIrqPinIrq(irqState).

• Which in turn must cause iqMesh_extIrqInterupt() to run.

• Break: libIqMeshSpiInterface.c:208 in iqMesh_extIrqInterupt.
Expect:

• All three points are hit on edges.

• The irqState matches what HardwareIqMeshGpioReadIrqPin() reads.
If FAIL:

• Configure EXTI for the correct edge(s) (rising and falling).

• Clear EXTI pending bits.

• Check NVIC priority (EXTI must preempt long-running code).
Best highest IRQ priority. IRQ is short.

10) State machine verification
Primary Break: libIqMeshSpiInterface.c:331 inside iqMesh_task to inspect config.state.
Expect:
During normal operation, config.state cycles among:
IQMESHSTATE_CHECKIRQ, IQMESHSTATE_RUN, IQMESHSTATE_RUNSET, IQMESHSTATE_UPDATEIRQ (as your note
indicates).
If state looks wrong / stuck:

• Set another Break: libIqMeshSpiInterface.c:357 and inspect config.module_rdm_id vs your rdm_id.
o If different: SPI read likely failing (bad MISO/CPOL/CPHA/CS timing/DMA RX).
o Re-verify steps 6–8, especially MISO and the RX callback path.

