igMesh SPI (VISION SPI) Integration — Step-by-Step Debug Guide

0) Preconditions (do these once)

e Build flags / optimization: Start with no LTO and -00/-Og, enable full debug symbols. (Debug mode)

e Single caller: Ensure igMesh_task() is called from one context only (main loop or a dedicated RTOS task). No
concurrent calls.

e Scheduler cadence: CalligMesh_task() regularly (e.g., in main or every ms). Starvation will stall the state
machine.

e Pin mapping: Double-check IRQ, CS, MOSI, MISO, SCK match your board schematic and voltage levels (no 5V
on 3V3 parts).

e SPImode/speed: Match CPOL/CPHA and max clock of the module. If unsure, start slow (e.g., 1 MHz) and mode
0 or the mode your example uses.

1) Library initialization
Break: liblgMeshSpilnterface.c:204 in igMesh_init.
Expect:
e Function is called exactly once after boot.
If FAIL:
e Confirm you call igMesh_init() before the firstigMesh_task().

177 kool igMesh init(const uintd t *_rdm id, uwintlé_t speciallmxLength, bool dfuSupport, icmesh callbacks t callbacks)

178 H{
179 spi_igmesh callbacks t spiCallbacks;
180 S/ Imit igmesh
181 FresBuffer (stxDmx) ;
182 FreceBuffer (srxRdm) ;
183 FresBuffer (stxRdm) ;
184 FreeBuffer (& (dfuState.rxDfu));
185 dfuState.support = dfuSupport:
186 igSpecialDmxLength = specialDmxLength + 1; // include personality at start
187 la=stIglmxMode = 0:
188
189 spiCallbacks.S5PISetTxRx = &spi settxrx callback t:
150 spiCallkbacks.5PISetCs = &spl_setcs_callback t;
Lzl spiCallbacks.DataRx = &spi_data_rx callback t:
152 spiCallbacks.IxQ = &spi_irg callback t;
193 spiCallbacks.IrQFlag = &spi_irg flag callback t:
154 spiCallbacks.Finish = &spi_finish callback t;
185 spilgMesh init (spiCallbacks);:
196
187 ImxReceivedHandler = callbacks.DmxReceived;
188 RdmReceivedHandler = callbacks.RdmReceived;
159 DfuFlagReceivedHandler = callbacks.DfuFlagReceived;
200 DfuDataReceivedHandler = callbacks.DfuDataReceived;
201 memset (§config, 0, sizeof (config)):
202 config.state = IQMESHSTATE NOTCONFIGURED;
203 memcpy (rdm_id, _rdm id, €):
@ =204 return true;
205 }

2) Task loop is running
Break: liblgMeshSpilnterface.c:322 in igMesh_task.
Expect:

e Breakpoint hits repeatedly at your chosen cadence.

e No long gaps (watch a counter or timestamp to detect stalls).
If FAIL:

e Wire igMesh_task() into main loop/RTOS task with adequate priority and stack.

e Make sure no blocking calls (e.g., long delays) run at higher priority and starve this task.
316 kool igMesh task(uint32_t tickMs)

317 4
318 bool todo;
315 spi_message_header_t msg;
320 uints_t *bufPointer;
321
& 322 | if(!spilgMesh Task(tickMs))
323 {
324 return false;
325 }
326

3) IRQ pin read function
Function: Check Function HardwarelgMeshGpioReadIrgPin() (in your main.c example).
Expect:

e Reads the actual IRQ line (correct port/pin).
e Correctlogic polarity (active level matches hardware).

e Input mode and pull (pull-up/down) are configured correctly.

e Code: Set a breakpoint inside HardwarelgMeshGpioReadlrgPin() and watch the returned value change when
traffic occurs.

e HW: Logic analyzer/oscilloscope on the IRQ pin. You should see edges when igMesh needs attention.
If FAIL:

e Fixthe GPIO init (mode=Input, pull as required).
e Invertthe read value if your board inverts the signal.

e Check level shifting / voltage domain compatibility.
263 bool HardwarelIgMeshGpioReadIrgPin ()
264 {
265 return gpio_input data bit read(EXTIRQ GFIC PORT, EXTIRQ PIN):
266 | }

4) TX buffer & packet allocation
Break: spi_igmesh.c:81 in spilgMesh_PrepareData().
Expect:

e Function is hit whenever a packet is prepared.

e AllocateTxBuffer() returns true.
If FAIL (not called):

Step back to where AllocateTxBuffer() is used and inspect why it returns false.

e Heap check: Increase heap or switch to static buffers. Watch for malloc failure or fragmentation.

€8 Dbool spilgMesh PreparcsData(spi_message_header_t header, uintd_t **bufPointer)

69 i
70 E if(state.state != SPITXSTATE_IDLE)
71] i
72 // communication ongoing
T3 recturn false;
T4 -}
75 ifi{'AllocateTxBuffer (header.length))
760 |
77 return false:
78 - }
Th state.msgtx = header;
80 *pufPointer = state.txBuf:
» 81 return true;
82
5) CS set via handler

Break: liblgMeshSpilnterface.c:92 in spilgMesh_SetData() — confirm handler.SPISetCs(...) is invoked.
Expect:

e Called prior to each SPI transaction.

e Correct CS polarity (usually active-low).
If FAIL:

e Recheck the IRQ handling path (IRQ drives the need to transact).
e Returnto step 3 (bad IRQ prevents transactions).

e Verify your handler struct is correctly assigned during init.

D 84 bool spilgMesh SetData(bool irgSet)

85 [H{

86 /f If IRQ was set controller is ready to talk
87 if (irgSet)

88 {

89 ff Talk directly

a0 state.state SPITXSTATE STARTCOMMANDCS;
91 // Start sending

» 9z if (handler.SPISetCs != NULL)

93 [+ {

G4 state.timeoutSet = false;

S5 handler.5PISetCs (false) ;

96 | }

27 else

a8 [{

a9 return false;
100 }
101 1}
1oz else
103+ |
104 /f Wait first to make sure he is ready
105 state.timeoutSet = false;
106 state.state = SPITXSTATE_WARIT:
107 1}
108 return true;
109

6) Hardware CS toggling (board function)

Function: HardwarelgMeshSpiSetCsPin(bool active) in your main.c. (Example)
Break: HardwarelqMeshSpiSetCsPin and check if it gets called.

Expect:

e CSpintoggles (active during the full SPI frame).
Probe (HW):

e LA/scope on CSline: one clean low (or high, per polarity) spanning the entire transfer.
If FAIL:

e Fix pin mapping, polarity, and GPIO speed.
250 J* SPI Callback Cs implementation for iQ.Controller - iQ.Controller SPI Cs*/
251 vwold HardwareIgMeshSpiSetCsPin(bool set)
252 {
253 if{set)
254 {
255 gpio_bits_set (OUT_SPI_CS_GPIO PORT, OUT_SPI_C5 PIN):
256 }
257 else
258 {
259 gpio_bits_reset (OUT_SPI_CS_GPIO PORT, OUT_SPI_CS_PIN);
260 }
261

Y2

7) TX/RX data path selection
Function: HardwarelgMeshSpiSetTxRx(...) in your main.c. (Example)
Break: HardwarelgMeshSpiSetCsPin and check if it gets called.
Expect:

e MOSI shows activity during transfer.

e SCK present and clean; matches configured SPI mode.

e MISO shows non-tristated data while CS is active.
Probe (HW):

e |LA/scope on MOSI/MISO/SCK. Sample around mid-bit per your CPHA.
If FAIL:

e Lower SPI speed.

e Verify CPOL/CPHA and bit order.

279 /* SPI Callback implementation for iQ

280 wold HardwarelIgMeshSpiSetTxRx (uin t
281 {

ntroller - iQ.Controller ? SPI 2222%/

buf, uintlé_t length)

282 if (DMAl1 CHANNEL1 BUFFER_SIZE < length)

283 [{

284 while (crue){}

285 }

286 dma_channel enable (DMA1 CHANNELL, FALSE):

287 dma_channel_enable (DMA1 CHANNEL2, FALSE);

288 dmaBufLength = length;

289 memepy (dmaBufTx, buf, length) ;

290 f* g dma n r parameter */

291 /* user need o v define values DMAx C XXX BASE RDDR and DMAx CHANNE
292] wk_dma_channel config(DMAl_ CHANNEL1,

293 {uint32_t)&SPIl->dt,

294 DMAl_CHANNEL1_MEMORY_ SBASE_ADDR,
265 dmaBufLength) ;

296 f* transfer parameter */

297 f* bl define values DMAx CHRNNELy XXX BASE_ADDR and DMAx CHRHNN
298] wk dma_ channel config(DMAl CHANNELZ,

299 (uint32_t}&SPIl->dt,

300 DMAl_CHANNELZ_MEMORY_ SASE_ADDR,
301 dmaBufLength) ;

302 dma_channel enable (DMA1 CHANNEL1, TRUE):

303 dma_channel_enable (IMA1 CHANNEL2, TRUE);

304 |}

8) DMA RX completion path
Break: main.c in your _SPI_DMA_RxTransferCompleteCallback.
Watch:

e dmaBufLength > 0.

e dmaBufRx[0] not 0x00 and not OxFF when dmaBufLength == 1.

e Callbackfires per transaction.

e Buffer contents change between transactions.
If FAIL:

e Ensure DMAis properly linked to the SPI RX stream.

e Verify CS remains asserted until the last RX byte completes.
328 /* HAL 5PI Callback - HAL SPI ?7%/
328 wvoid SPI_DMA TxTransferCompleteCallback()
330 i
331T // Do not use. This will fire too early. use Rx instead
332
333 wvoid SPI_DMA RxTransferCompleteCallback()

334 i
335 Tl SystemIgMeshSpiTxRxComplete ((uint8_t*)dmaBufRx, dmaBufLength):
336 | }

9) External IRQ line (EXTI) callback chain
Breaks & Flow:

e Breakinside your EXTI callback (e.g., EXINT_IrgLineCallback in main.c).
e That callback should call SystemlgMeshlrgPinlrg(irgState).
e Which in turn must cause igMesh_extlrginterupt() to run.

e Break: liblgMeshSpilnterface.c:208 in igMesh_extIrgInterupt.

e Allthree points are hit on edges.

e The irgState matches what HardwarelgMeshGpioReadlrgPin() reads.
If FAIL:

e Configure EXTI for the correct edge(s) (rising and falling).
e Clear EXTI pending bits.

® Check NVIC priority (EXTI must preempt long-running code).

Best highest IRQ priority. IRQ is short.
3389 woid EXINT IrgLineCallback()
340 S ¢ -
& 341 SystemIgMeshIrgPinTrg(gpio_input data_bit_ read (EXTIRQ GPIO PORT, EXTIRQ PIN)):
342 }
207 woid igMesh extIrgInterupt (igmesh irg edge t edge)
208 {
[] 209 spilgMesh extIrgInterupt (edge);
210 ¥

10) State machine verification
Primary Break: liblgMeshSpilnterface.c:331 inside igMesh_task to inspect config.state.
Expect:
During normal operation, config.state cycles among:
IQMESHSTATE_CHECKIRQ, IQMESHSTATE_RUN, IQMESHSTATE_RUNSET, IQMESHSTATE_UPDATEIRQ (as your note
indicates).
If state looks wrong / stuck:
e Setanother Break: liblgMeshSpilnterface.c:357 and inspect config.module_rdm_id vs your rdm_id.
o If different: SPI read likely failing (bad MISO/CPOL/CPHA/CS timing/DMA RX).
o Re-verify steps 6-8, especially MISO and the RX callback path.

